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Abstract
Rephrasing the backbone of two-dimensional percolation as a monochromatic
path crossing problem, we investigate the latter by a transfer matrix approach.
Conformal invariance links the backbone dimension Db to the highest
eigenvalue of the transfer matrix T, and we obtain the result Db = 1.6431 ±
0.0006. For a strip of width L, T is roughly of size 23L , but we manage to
reduce it to ∼L!. We find that the value of Db is stable with respect to inclusion
of additional ‘blobs’ tangent to the backbone in a finite number of points.

PACS numbers: 64.60.Ak, 02.10.Yn, 05.50.+q, 11.25.Hf

1. Introduction

The critical behaviour of percolation has attracted considerable interest in the mathematical
physics literature over the last decades. Whereas most practical applications (such as studying
the efficiency of oil extraction from a porous soil,or the fractal geometry of a strike of lightning)
take place in three spatial dimensions, analytical progress has largely been confined to two
dimensions [1]. Although of geometric origin, percolation fits in the framework of critical
phenomena, and in particular the concept of universality should apply. One therefore expects
the specific choice of a discrete model (bond or site percolation) and the lattice structure (e.g.
square or triangular) to be of no relevance to the determination of the critical exponents.

A large part of the progress made is due to the identification with the q → 1 limit of
the q-state Potts model [1]. A very fruitful idea has been to treat the latter in terms of its
random cluster formulation [2], and further in terms of the loops surrounding the clusters [3].
Applying Coulomb gas (and related) methods to the loop model led to a range of exact results
around 1980 [4]. In particular, the correlation length exponent ν = 4

3 [5] and the magnetic
exponent xh = 5

48 [6, 7] (the codimension of which is the fractal dimension of the percolating
cluster, D = 2 − xh = 91

48 ) were computed.
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The next major advance followed from the advent of conformal field theory [8], which
provides an appealing correspondence between the q-state Potts model (for particular values
of q) and the so-called minimal models. For instance, the exponents xk = 1

12 (k
2 − 1), with

k � 2 [9, 10], describing the asymptotic decay of the probability Pk(r) ∼ r−2xk of having k
loop segments connecting two narrow regions over a distance r � 1 [4], were found to fit
in the Kac table of conformal dimensions [11]. Another remarkable result is the celebrated
Cardy formula [12] expressing certain path-crossing probabilities in terms of hypergeometric
functions.

More recently, percolation has attracted the interest of probabilists. In a ground-breaking
paper, Smirnov has proved that the scaling limit of site percolation on the triangular lattice
exists and is described by the stochastic Loewner evolution with parameter κ = 6 [13].
Consequently, most of the results referred to in the above have now been rigorously proved.

Nevertheless, a certain class of exponents have continued to resist the physicists’ attempts
over the years. These are most conveniently defined by considering bond percolation inside
a large square, of which we imagine two opposing sides to be connected to superconducting
plates (see figure 1). Each percolating bond is stipulated to possess a fixed and finite
conductivity, and an electric voltage is applied across the plates. At the percolation threshold
p = pc, the part of the network that supports a non-zero current is known as the backbone, and
its fractal dimensionDb determines a critical exponent x̃2 = 2−Db. Near pc, the conductivity
of the network scales as (p − pc)

t , defining the conductivity exponent t. The latter can be
connected to the fractal dimension of random walks constrained to the percolating cluster, or
to its backbone, via the Einstein relation [14].

A number of conjectures for x̃2 have been falsified as numerical simulations have become
increasingly accurate. The benchmark thus far is the Monte Carlo method of Grassberger [15]
in which the conducting part of the cluster is identified using a clever recursive algorithm.
Large-scale simulations yield the value x̃2 = 0.3568 ± 0.0008 [16]. The exponent x̃2 is
actually a member of a family of the so-called monochromatic path-crossing exponents x̃k
[10], with the magnetic exponent fitting in as xh = x̃1. The higher exponents x̃k , k � 3, are
all unknown.

In the present paper we provide a numerical estimate of x̃2 using an algorithm which is
entirely different from that of Grassberger. Using the reformulation of x̃2 as a path-crossing
problem, we relate it to the largest eigenvalue of a linear operator (actually a transfer matrix)
that builds all possible percolation clusters supporting at least k = 2 mutually non-intersecting
paths. We work in the geometry of semi-infinite strips of width L, with L � 9.

Our approach is interesting in several respects. First, the reformulation as an eigenvalue
problem makes direct contact with the predictions of conformal field theory [17]. That
Grassberger’s recursive algorithm defines a conformally invariant observable is not a priori
obvious, but the fact that the transformation to a path-crossing problem involves a conformal
transformation and that here we obtain a consistent value of x̃2 shows that this is indeed the
case. One would then further expect x̃2 to be the conformal dimension of a primary operator
Ô2 in some (presently unknown) conformal field theory of percolation. In particular, the
conformal tower of Ô2 should possess descendents whose conformal dimensions are integer-
spaced with respect to x̃2. We have checked this prediction by examining the scaling of the
first few eigenvalues of our transfer matrix with system size. We shall present evidence of a
level two descendent with conformal dimension 2.35 ± 0.1, whereas there does not appear to
be a descendent at level one.

Second, the generalization of our method to the case of more (k � 3) paths, or to the
Potts model with q �= 1 states, is immediate. Results for these cases will appear in a separate
paper [18]. Third, from a technical point of view we have had to tackle the major obstacle
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of writing a transfer matrix in which some degrees of freedom (the percolation clusters)
must be summed over, whereas others (the paths) act as constraints on the former but must
not themselves be summed over. Fourth, we have devised an algorithm which is naturally
parallelizable.

Similar to Grassberger [16] we find that the data for x̃2 are hampered by strong (presumably
non-analytical) corrections to scaling. As a consequence our final result

x̃2 = 0.3569 ± 0.0006 (1.1)

confirms that of [16], but unfortunately does not improve its precision. On the other hand, we
have devised some variants of our algorithm in which the constraint of mutual avoidance of
the two paths is relaxed, so that they are allowed to touch in some configurations at vertices
but not to share an edge. Physically this means that we measure the fractal dimension of the
backbone with some ‘blobs’ that are tangent to it included. The surprising result is that this
relaxation of the original definition does not alter the value of x̃2.

The paper is laid out as follows. In section 2 we review the reasoning leading from the
original formulation of the backbone dimension to that of a path-crossing problem, and restate
the latter in a strip geometry. The construction of the corresponding transfer matrix, and of its
associated state space, is described in section 3. In section 4 we transcribe this as an algorithm
and discuss its implementation. The data are analysed and extrapolated to the L → ∞ limit
in section 5. The appendix displays some transfer matrices produced for small system size.

Note added: When this work was being completed we became aware of the preprint of Lawler
et al [19] in which x̃1 = 5

48 is established on a rigorous basis, following Smirnov [13]. The
authors also relate x̃2 to a second-order partial differential equation with specific boundary
conditions, but fail to provide an explicit solution of the latter. We thank John Cardy for
bringing this to our attention.

2. Path-crossing probabilities

Let us return to the formulation of the backbone problem given in the introduction, namely in
the so-called busbar geometry (see figure 1). The condition that a given point (site or bond, as

A Figure 1. Busbar geometry, here shown for the case of bond
percolation on the square lattice. The backbone is indicated by
thick edges.
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Figure 2. Annular geometry endowed with critical percolation
(here shown in the continuum limit). A possible choice of two
disjoint percolating paths is shown as dashed lines.

the case may be) on the spanning cluster belongs to the backbone is that it can be connected
to either of the superconducting plates by means of two mutually non-intersecting paths1.

This choice of geometry is somewhat unnatural, as it does not fully display the rotational
symmetry of the continuum limit. It is more convenient to work in an annular geometry limited
by two concentric circles of radii r 	 1 and R � 1. Interpreting the inner circle as the point
which is a potential element of the backbone and the outer as the point at infinity, we see that
a given percolating configuration in the annulus contributes to the backbone if and only if the
two circles are connected by two mutually non-intersecting paths on the percolating cluster(s)
(see figure 2).

More generally, one may define higher exponents x̃k by studying, at the percolation
threshold, the probability Pk(r, R) ∼ (

r
R

)x̃k that the annulus is traversed by k mutually non-
intersecting paths. Clearly, the configurations in which these paths belong to different clusters
are asymptotically subdominant, and so we might as well assume that they belong to the same
cluster.

The situation may be further refined [10] by considering path-crossing events in which a
given number of traversing paths belong to the clusters, and the remainder belong to the dual
clusters2. More precisely, for each k there are 2k types of path configurations, each specified
by a set of colour variables (τ1, τ2, . . . , τk) with τi = +1 (respectively τi = −1), which means
that path number i belongs to the clusters (respectively, to the dual clusters). Within the
context of the q-state Potts model (with q �= 1), it is not obvious whether different choices of
the colour variables will lead to the same critical exponents, except of course for the obvious
symmetries obtained by rotating the sequence (τ1, τ2, . . . , τk), reversing its order, or dualizing
it. But in the percolation case (q = 1) the bonds (or sites) are uncorrelated, and various parts
of the system may be dualized independently. Using this approach, it has been proved in the
case of site percolation on the triangular lattice [10] that all the polychromatic sequences (in
which both τi = +1 and τj = −1 are represented; k � 2) share the same critical exponents.
In particular, any polychromatic colour configuration may be transformed into the alternate
one, τi = (−1)i .

1 Strictly speaking, this condition also includes points which are being held exactly at zero current in a Wheatstone
bridge-like arrangement. Since in the continuum limit the percolation cluster is almost surely ‘asymmetric’, such
points are extremely rare. Also see the discussion below on the possibility of contact points for paths.
2 For site percolation, the dual clusters consist of the non-conducting (uncoloured, white) sites. For bond percolation
on the square lattice, it is most natural to think of the dual clusters in terms of the standard duality transformation in
the random cluster model [2], according to which any conducting edge is intersected by a non-conducting dual edge,
and vice versa.



Transfer matrix for the backbone exponent of 2D percolation 2135

We expect this result to be independent of a particular lattice realization, and thus to apply
also to the bond percolation. In this case, the identification of the critical exponent with that
of k traversing loop segments on the surrounding lattice, referred to as xk in the introduction,
becomes evident (at least for k even). A rigorous proof that the formula xk = 1

12 (k
2 − 1)

applies to the polychromatic path-crossing problem for site percolation on the triangular lattice
was spelt out in [10].

For monochromatic sequences (all τi = +1) the argument given in [10] fails, and the
corresponding exponents x̃k are expected to be different from the xk. Indeed, from entropic
considerations it should be clear that xk < x̃k < x2k.

Several of the xk have nice physical interpretations. Thus, x2, x3 and x4 are, respectively,
the codimensions of the cluster perimeter (hull) [9], the external (accessible) perimeter [10]
and the set of pivotal (singly connecting) bonds [9]. The latter also yields the correlation
length exponent [5], via the scaling relation ν = 1/(2 − x4).

In the absence of an exact solution, one might imagine evaluating the exponents x̃k
numerically by measuring the decay of the path-crossing probabilities on an annulus, as
outlined above. A more feasible alternative is to compute certain restricted free energies on
semi-infinite cylinders by using a transfer matrix, as we shall describe in the next section.
These free energies can be related to the critical exponents as follows.

Since the scaling limit of critical percolation is conformally invariant [8, 13], one is allowed
to transform the annular geometry of figure 2 into a cylindrical one by means of the conformal
mapping w ≡ u + iv = L

2π log(z). The transformed complex coordinatew may be thought of
as embedded in the strip −∞ < u < ∞, 0 � v � L with periodic boundary conditions in
the v-direction. This means that figure 2 must be viewed in perspective, interpreting the inner
and outer circles as the extremities of the cylinder.

We are going to make use of the following result: let f0(L) be the free energy per unit area
for the unrestricted percolation problem, and f̃ k(L) (respectively fk(L)) the corresponding
quantity for the constrained problem where only those configurations are included in the
partition sum in which (at least) k monochromatic (respectively polychromatic) paths span the
length of a semi-infinite cylinder of width L. Then as L → ∞, the discrete lattice model, at
criticality, should have a continuum limit described by the conformal field theory, so that [17]

f̃ k(L)− f0(L) = 2πx̃k
L2

+ o(L−2) (2.1a)

fk(L)− f0(L) = 2πxk
L2

+ o(L−2). (2.1b)

We shall obtain estimates for the x̃k by extrapolating data for sufficiently large strips to
the limit L → ∞.

3. Transfer matrix algorithm

It has been known for a long time how to numerically compute the fk(L), by writing the
transfer matrix for the loop model [3] on the basis of planar (Catalan-like) connectivities
(see [20] for a closely related computation). The same is true for f̃ 1(L) by using the trick of
adding a ghost site [21], or alternatively (via a duality argument) by forbidding the clusters to
wrap around the cylinder [22].

The computation of f̃ 2(L), the principle of which we now describe, is considerably more
complicated. The main complication stems from the fact that to compute the corresponding
partition sum we must exclude those configurations of the percolation clusters that do not
support (at least) two spanning paths, and count each of those that do with unit weight (and not



2136 J L Jacobsen and P Zinn-Justin

L...2

t+1

t
1

Figure 3. The square lattice with periodic boundary conditions along one of its orientations. The
dotted lines are time slices.

Figure 4. The ten possible path configurations for L = 4.

with a weight equal to the number of ways two such paths can be realized for the given cluster
configuration). Roughly speaking, the degrees of freedom are the clusters and the paths, and
we must trace over the former but not the latter.

For the sake of definiteness we consider in this section critical bond percolation on
a square lattice, though the principle of the transfer matrix can be applied to any lattice
with any probability of occupation p, and to bond as well as site percolation. Since in our
case pc = 1

2 [1], it is convenient to simply assign a weight of one to every configuration of
percolating/non-percolating bonds. For now we consider the simplest orientation of the lattice,
which corresponds to L sites in the transverse direction with periodic boundary conditions
(figure 3). With all these conventions, f0(L) = −2 log 2 in equation (2.1a). We shall discuss
later another possible orientation of the lattice.

We keep track of the paths by defining path configurations in analogy with those used
in the transfer matrix calculations of the self-avoiding walk [23]: among the L sites in a row
(at time t = t0), two sites are connected to the point at infinity (time t = −∞) by means of
paths. Furthermore, in order to allow subsequent backtracking of either path (at a later instant
t > t0), the remaining sites may be connected in pairs by means of backward arches. The
possible configurations for L = 4 are listed in figure 4.

To overcome the difficulty of not summing over the possible path configurations, we define
the basis states on which the transfer matrix acts as lists of path configurations. Elements of
the list give all possible realizations of the positions of the paths (and of the arches) which are
compatible with the ‘past’ of the state.

Formally, if P is the set of path configurations, then basis states are indexed by non-empty
subsets of P (one must exclude the empty subset since it corresponds to states for which there
is no possibility of two disjoint paths reaching time t). Note that the dimension of the total
space is 2#P − 1, which grows extremely rapidly with L. We shall return to this point when we
discuss practical implementation.

By definition, the matrix element TAB between basis states indexed by A ⊂ P and B ⊂ P
equals the number of configurations of the bonds between time t and time t + 1, such that the
state A at time t + 1 is obtained from the state B at time t. Given the initial state B and the
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Figure 5. Evolution of two path configurations with the same percolation configuration. Solid
(respectively dashed) lines represent percolating (respectively non-percolating) bonds, whereas
thick lines represent the possible paths.

configuration of the bonds ω ∈ ! (that is whether they are percolating or not, ! being the set
of all possibilities), the procedure to determine the final state A is as follows:

• For each possible initial path configuration b ∈ B, consider all possible continuations of
the existing lines at time t (the two original paths and the arches) that are compatible with
the configuration of the bonds ω. Note that each line must be either continued to a site at
time t + 1 or connected to another line (in which case it will re-emerge at the other end
of the arch; the lines coming from infinity or from the same arch cannot be connected to
each other). Furthermore, for each pair of adjacent empty sites, one must consider the
possibility of creating a new arch. Let φ(b, ω) ⊂ P be the list of path configurations at
t + 1 thus produced.

• The full state A is reconstructed by simply putting together all the possibilities (of the
form φ(b, ω), b ∈ B) obtained for each initial path configuration. If one finds A = ∅,
this means that no continuation is possible, and the state is excluded.

We give an example of such a computation in figure 5.
In other words, we have the formal identity

T|B〉 =
∑
ω∈!

∣∣⋃
b∈B

φ(b, ω)
〉

which shows quite explicitly that one sums over bond configurations but not over path
configurations.

Finally, the free energy per unit area is given by

f̃ 2(L) = − lim
t→∞

1

Lt
log〈A|T(L)t |B〉 (3.1)

where the states A, B specify the boundary conditions and are essentially arbitrary (the state
A should belong to the image of T, see the next section), and T(L) is the transfer matrix for
strip width L.

As t → ∞, the matrix element 〈A|T(L)t |B〉 is dominated by the largest eigenvalue λ(L)
of T(L), and combining equations (2.1a) and (3.1), we find:

1

22L
λ(L) = 1 − 2πx̃2

L
+ o(L−1). (3.2)
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Figure 6. The configurations of figure 4 redrawn as arches.

4. Algorithmic details

In order to appreciate how effective the transfer matrix approach is, it is important to understand
the structure of the matrix constructed in the previous section. It is an integer-valued matrix
of extremely large size, but many of its entries are zero. In fact, starting from any basis state
|B〉, a very limited number of states are generated. These are the only states that matter for the
determination of the largest eigenvalue(s) and we can thus restrict ourselves to a submatrix of
much smaller size.

We now describe schematically the procedure we used. The main steps of the algorithm
are as follows:

(i) Start with an arbitrary basis state (ideally, one that we know is generated by iteration of
the transfer matrix). Put it onto a ‘stack’ of states for processing.

(ii) Pick a state B from the stack and ‘process’ it, i.e. generate the non-zero entries TAB , and
store them. This encodes one column of the transfer matrix.

(iii) Consider every new basis state A that has been generated at step (ii); check if it has
already been processed; if not, add it to the stack. If the stack is non-empty, go back to
step (ii).

(iv) Finally, once the stack is empty, the largest eigenvalue is computed by simple iteration of
the matrix that has been generated.

The transfer matrix is such that the submatrix thus generated has no zero rows or columns.
We call this submatrix the reduced transfer matrix.

An important remark for practical applications is that this procedure is highly
parallelizable: several CPUs can perform step (ii) simultaneously and independently; only
the stack must be shared. In practice, it is necessary to have a server that communicates with
various clients involved in the computation; it ensures that their stacks are synchronized, and
dispatches the tasks. At the end of each calculation (step (ii)), a client sends the server the
new states created and receives the states created by other clients in the meantime. The time
spent updating the stack being very small compared to the calculation time, the parallelization
is near 100% efficient (at least up to 20 clients which is the maximum we tested).

Let us now discuss this procedure in more detail.
First, we must define how to encode path configurations. A study of figure 4 shows that

if exactly k = 2 paths are connected to t = −∞, then they can be considered as an extra arch.
This trick reduces the number of configurations and slightly simplifies the implementation
(but cannot be extended to k �= 2). We can then move the point at infinity and redraw the
configurations as standard arch configurations3 (see figure 6).

An arch configuration is then encoded in a standard way as a sequence of closing/
empty/opening steps, i.e εi ∈ {−1, 0,+1}, 1 � i � L, such that the height function

3 The number of L-point arch configurations equals mL − 1, where mL are the Motzkin numbers [24] (the empty
configuration is excluded). The generating function M(x) ≡ ∑∞

L=0 mLx
L = (1 − x − √

1 − 2x − 3x2)/2x2 has a
singularity in x = xc = 1

3 , showing that the number of path configurations is mL ≈ 3L asymptotically.
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1 2 L...

T
H=H  H  ...H
V=V  V  ...V

1 2

1 2 L

L
t+1

t

Figure 7. Factorization of the transfer matrix.

h( = ∑(
i=1 εi satisfies h( � 0 for all ( and hL = 0. States are now defined as sorted

lists of path configurations.
Next, we discuss how to perform step (ii) in practice. One possibility would be to directly

apply the principle of section 3, that is to consider all possible bond configurations between
two successive time slices, and for each, to produce the resulting state. However, since there
are 22L such configurations, the time required to do so grows exponentially, which is not
satisfactory. Besides, the determination of all possible continuations of the paths to time t + 1
is a rather complex task. Instead, we shall use a factorization of the transfer matrix as a
product of L sparse matrices Ti , 1 � i � L, which describe the addition of a single site. The
details of the factorization depend on the exact situation envisioned. We present here three
cases.

4.1. The square lattice with standard orientation

The example used so far is that of the square lattice with its usual orientation. In this case
the factorization can be pushed further by writing T(L) = H1 · · · HLV1 · · · VL, where Vi

(respectively Hi) corresponds to the addition of a single vertical (respectively horizontal)
bond (figure 7).

The action of Vi is very simple: Vi = V′
i + V′′

i , where V′
i (respectively V′′

i ) describes the
evolution when the vertical bond number i is percolating (respectively non-percolating). V′

i is
simply the identity, whereas V′′

i acts on path configurations as follows: either a path/arch
is at site i, in which case it gives 0 (the path cannot cross the non-percolating bond), or there
is not, which is the identity. The action on a state made of several path configurations can be
deduced from these basic rules, as explained in section 3.

The action of Hi is slightly more complicated: Hi = H′
i + H′′

i , similarly as above.
The definitions of H′

i and H′′
i must take into account all the possibilites of continuations,

recombinations and creations of paths along the horizontal bonds. This requires working,
as intermediate states, with path configurations of length L + 2 instead of L, since one
must temporarily distinguish the paths directed horizontally and vertically at the first and
last vertices being currently processed. We leave the details as an exercise to the interested
reader.

A final ingredient is that one can use the dihedral symmetry of the transfer matrix: since
the latter commutes with cyclic permutations of the sites and with reflections, one can select a
representative in each orbit of the dihedral group among the basis states. Note that the action
is an overall action on all configurations that constitute the state simultaneously. The states
generated by the above procedure can then be replaced with the representative state of their
orbit, producing a smaller transfer matrix but with identical eigenvalues. This further reduces
the size of the transfer matrix by a factor of (roughly) L.
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...1 2 L

t+1

t
t+1

t

Figure 8. Deformation of the square lattice. Figure 9. Another deformation of the square lattice.

4.2. The square lattice with standard orientation 2: the square/octagon deformation

It is interesting to study variants of the algorithm above. One natural question is: if one
allows the paths to touch each other at vertices, how is the asymptotic behaviour of the free
energy modified and in particular is x̃2 left unchanged? Another possible formulation of this
question is to consider a deformation of the lattice in which each vertex is replaced with a
small square, resulting in a square/octagon lattice (figure 8). The bonds of the small square are
always percolating and allow paths that would have touched at a vertex to avoid each other 4.

Physical insight suggests that such modifications should not affect the values of x̃2. The
reason is that, just like the Wheatstone bridge configurations mentioned in the introduction,
the fact that current flows through loops which are connected to the backbone by just one
point is rather unstable since any microscopic defect that breaks the symmetry between the
two orientations of the loops (deforming the lattice is precisely a way of introducing such
a defect) will produces a non-zero current. If x̃2 is to be universal it should not depend on
such microscopic details. It is this insight that we would like to test. There is another, more
practical reason one would want to study such modifications of the algorithm, which will be
apparent in section 5.

It is very simple to modify the transfer matrix of section 4.3 to allow such path evolutions.
Vi is unchanged, whereasHi now allows two paths to reach the same vertex and emerge from
it as if they had not touched each other.

4.3. The square lattice with light-cone orientation: the hexagon deformation

Finally, we rotate the lattice by 45◦, the motivation being that we expect better convergence
properties, as observed empirically in similar computations [22, 25]. Unfortunately, there is
no efficient way to encode the corresponding configurations, and we are therefore led to a
modification of the lattice which is similar to what was done in section 4.2: this time the
result is a hexagon lattice in which vertical bonds are always percolating (figure 9). This is
equivalent to allowing ‘horizontal tangencies’ on the original square lattice, that is allowing
two paths to touch at one vertex in the configuration where the two upper edges belong to the
same path; however, ‘vertical tangencies’ are still excluded.

In this case, encoding the states becomes completely identical to what was done previously.
There is a decomposition T = T1 · · · TL where Ti adds an extra vertex i at time t + 1 (and two
bonds). Since the new sites at t + 1 are now shifted with respect to the sites at t, the action of
the transfer matrix includes a conventional rotation of a half-bond length (or π/L).

4 Note that a path crossing a vertex of the original lattice can correspond to two different paths on the deformed
lattice, but since we do not sum over path realizations this is of no consequence.
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Table 1. Size of the reduced transfer matrix.

L 4 5 6 7 8 9

s1 15 72 515 4219 41 728 ?
s2 12 51 291 1893 14 923 132 799
s3 12 51 291 1893 14 923 132 799

Table 2. Largest eigenvalue of the transfer matrix. The last column shows the second real
eigenvalue for the third transfer matrix.

L λ1/22L λ2/22L λ3/22L λ′
3/2

2L

4 0.514 287 790 945 0.540 388 840 500 0.718 747 415 570 0.058 692 638 251
5 0.594 678 112 301 0.617 254 658 842 0.775 012 703 547 0.145 046 191 784
6 0.653 760 363 032 0.672 285 202 673 0.812 529 692 986 0.224 345 992 159
7 0.698 459 489 246 0.713 573 950 794 0.839 330 907 375 0.292 806 902 950
8 0.733 243 927 216 0.745 682 316 102 0.859 432 882 632 0.351 338 353 673
9 ? 0.771 356 857 232 0.875 067 710 677 0.401 531 82

Relations (3.1) and (3.2) must also be modified to take into account the 45◦ rotation; the
latter introduces an extra factor of two in the unit of area, so that f0(L) = −4 log 2 and

1

22L
λ(L) = 1 − πx̃2

L
+ o(L−1). (4.1)

This factor of two alone increases the accuracy of the measurement of x̃2 compared to the
other two cases, since the corrections are expected to be smaller.

5. Numerical results

We show in table 1 the size of the reduced transfer matrix for 4 � L � 9, in the three cases
presented above (sections 4.1–4.3). While the full matrix is very roughly of size 23L , the size
of the reduced matrix seems to grow as L!, which is still large but not as intractable. It is
interesting to note that s2 < s1, that is the modification of the lattice to allow configurations
where paths touch at a point decreases the number of states.

We have no deep explanation for the remarkable equality of sizes of algorithms 2 and 3,
except the observed fact that the states generated are the same in the two cases.

Next we present the data for the largest eigenvalue of the transfer matrix in table 2 with a
12 digit accuracy.

In order to study the asymptotic behaviour of these series of numbers, we use equation
(3.2) for cases 1 and 2 (or (4.1) for case 3) to extract approximate values of x̃2. The results
are shown in figure 10. We also presented quadratic fits of these data.

Several remarks are in order. First the two curves corresponding to the square lattice with
its regular orientation (with or without contacts at points) seem to converge nicely within the
range allowed by the fits. This means that the value of x̃2 is not affected by this modification.
However, it is clear that the next corrections to λ1 and λ2 are quite different. Second, it is again
manifest in figure 10 that the third set of data, corresponding to the 45◦ rotated square lattice,
reaches its limit much faster than the other two. Whereas various fits will give a limiting value
for the first two anywhere between 0.355 and 0.36, the range is limited to 0.3563–0.3575 for
the latter. Assuming all these limits to be the same, we reach the estimate (1.1) mentioned in
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Figure 10. Values of x̃2 obtained from the eigenvalues of the transfer matrices (table 2) for case 1
(middle curve), case 2 (lower curve) and case 3 (upper curve).

the introduction. Note that there is no simple way for us to evaluate error bars since the results
are entirely dependent on the fits used, the latter being arbitrary without any knowledge about
the subleading corrections.

Finally, numerical estimates of the norms of higher eigenvalues of the transfer matrix
spectra can be extracted by a standard iteration/orthogonalization procedure [26]. Using this
method, complex eigenvalues are characterized by an oscillatory behaviour and thus can be
discarded (we expect physical observables to be linked to real eigenvalues). Specializing to
case 3 (cf section 4.3 above), we find the fourth eigenvalue (in norm) to be the second real
one. Its finite-size scaling is well fitted by (2.1), defining a critical index

x̃′
2 = 2.35 ± 0.1. (5.1)

This is consistent with the conformal dimension of a level two descendent of the backbone
operator.

Extracting the scaling dimensions for even higher eigenvalues becomes increasingly
problematic, as the finite-size effects get considerably stronger. It should, however, be noted
that the third real eigenvalue is doubly degenerate for any width L � 4. This is supposed to
have implications for the organization of the conformal tower of the backbone operator.
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Appendix A. Structure of some small-size transfer matrices

As an illustration of the algorithm explained in this paper, we provide here the simplest non-
trivial transfer matrices obtained with the geometries of sections 4.2 and 4.3. They correspond
to a strip length L = 4 and their size is s = 12.

The basis in which these matrices are expressed is described in figure 11.
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Figure 11. Basis states (up to overall dihedral transformations) for L = 4.

The matrices themselves read

T2 =




8 0 8 4 4 4 6 8 6 8 8 4
0 4 2 1 2 2 0 2 2 2 0 1
4 0 8 8 4 9 5 4 5 4 8 6
8 0 8 10 6 8 10 8 8 8 12 8
8 16 16 12 16 20 6 16 18 16 8 12
4 8 8 8 10 18 3 8 11 8 4 8
8 0 8 4 4 4 10 8 6 8 8 4
8 8 28 13 12 16 6 20 22 28 14 13
8 0 24 10 6 8 10 16 20 24 12 8
8 20 62 34 26 47 8 34 56 66 18 38
0 0 0 1 0 0 0 0 0 0 2 1
0 8 4 7 6 8 0 4 6 4 2 9




T3 =




36 24 32 19 28 24 24 40 28 32 33 19
9 18 18 12 15 16 7 18 17 18 12 12
2 7 8 13 8 14 6 1 2 0 9 7

10 12 0 14 13 12 18 6 6 0 12 8
36 48 24 38 49 52 30 40 38 24 34 34
6 11 2 9 12 18 6 5 6 2 6 9

12 8 0 0 6 0 12 8 0 0 7 0
10 12 84 39 24 44 12 48 64 84 32 44
6 4 32 13 9 12 6 26 30 32 14 11
1 0 39 16 6 19 3 16 34 47 5 27
0 0 0 7 3 6 4 0 3 0 6 6
0 0 0 7 3 6 0 0 3 0 2 10




.
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